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Stability and diffusion of surface clusters
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Abstract. Using kinetic Monte Carlo simulations and a bond–counting ansatz, thermal stability and dif-
fusion of an adatom island on a crystal surface are studied. At low temperatures, the diffusion constant
D is found to decrease for a wide range of island sizes like D ∝ N−α, where α is close to one, N being
the number of adatoms in the cluster. By heating up the surface, the system undergoes a phase transition
above which the island disappears. Characteristics of that transition are discussed.

PACS. 68.35.Fx Diffusion; interface formation – 82.20.Wt Computational modeling; simulation –
36.40.Sx Diffusion and dynamics of clusters

1 Introduction

Stability and dynamics of adatom as well as vacancy is-
lands of monoatomic height on crystal surfaces have been
studied intensively during the last years, both experimen-
tally and theoretically [1–12]. In particular, the equilib-
rium island size at low temperatures [10] as well as the
decay of clusters in the presence of surface steps or
larger islands (“Ostwald ripening”) [9,11,12] have been
analysed. Different microscopic mechanisms have been
discussed to explain the size dependence of the diffusion
constant D characterising the motion of the center of mass
of an equilibrated island. Typically, D decreases with the
number of adatoms N in the cluster in the form of a
power–law, D ∝ N−α, with α depending on the mech-
anism driving the island motion [1–8].

In this article, we consider adatom islands on a (100)
surface of a simple cubic crystal with energy barriers for
jumps of the adatoms to neighbouring surface sites given
by isotropic nearest–neighbour bond energies. Equilibrium
and dynamic properties are computed by using kinetic
Monte Carlo techniques [13]. Specifically, for a single is-
land in equilibrium with the “gas” of adatoms on the
surrounding terrace a phase transition is observed at a
critical temperature Tc, above which the island tends to
disappear. This aspect seems to have been overlooked in
previous investigations. A study on the equilibrium clus-
ter size in a related Ising model had been performed al-
ready several years ago [14], but it had been limited to
low temperatures. Quite recently, the thermal disintegra-
tion of a cluster was discussed [15], however, for systems
without conservation of the number of particles. In addi-
tion, we monitor the motion of the equilibrated adatom
island well below Tc, to estimate the value of α in the
nearest neighbour isotropic bond–counting case.
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The article is organized accordingly. In the next sec-
tion, we introduce model and method. We then present
results on the characteristics of the phase transition at
which the island disappears, followed by a discussion of
the diffusive motion of the cluster at low temperatures.
We conclude with a short summary.

2 Model and method

Adatoms on a square lattice may be constrained to a single
layer, with the occupation variable ni at surface site i
being either 1 or 0. To jump to an empty neighbouring site,
the adatom has to overcome an energy barrier Ea. Using a
bond–counting ansatz, that energy may be written in the
form

Ea = E0 + nEb (1)

where E0 is the activation energy for free diffusion of the
adatom on a locally perfect surface, n is the number of
occupied neighbouring sites, n = 0, 1, 2, or 3, and Eb is
the bond energy. Of course, the ansatz is not expected to
give a realistic description of a specific material. However,
it is useful in identifying generic properties of islands, as
will be discussed below.

The energy barrier (1) corresponds to the Hamiltonian
(apart from a constant)

H = −Eb

∑
i,j

ninj (2)

where the sum runs over neighbouring sites i and j. It
is interesting to note that the Hamiltonian may be tran-
scribed to a nearest–neighbour Ising model [11],

HI = −Eb/4
∑
i,j

SiSj + constant (3)
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Fig. 1. Island of monoatomic height in equilibrium with the
surrounding gas of adatoms.

with the Ising spin Si = ±1 being related to the occu-
pation variable ni by Si = 2ni − 1. The conservation of
the number of adatoms on the surface corresponds to the
conservation of the magnetization in the Ising model.

We considered square surfaces with L × L sites and
M ×M adatoms, i.e. with a coverage θ = M2/L2. Usu-
ally, full periodic boundary conditions were used, to re-
duce boundary effects. However, to compare with possible
experiments, we also applied free boundary conditions as
encountered for a terrace of L2 sites with large reflect-
ing energy barriers at the descending steps bordering the
terrace (large Schwoebel–Ehrlich barriers).

In the simulations, L ranged from 50 to 1000, and M
from 5 to 50, with the coverage θ varying between 4×10−4

and 4× 10−2. Obviously, at those coverages the adatoms
form a compact island at low temperatures due to the
attractive interactions, see (1). A typical configuration is
shown in Figure 1.

The kinetic Monte Carlo simulations were performed
in the standard way [13,16], based on jump probabilities
for the adatoms to neighbouring sites ∝ exp(−Ea/kBT ),
with kB being the Boltzmann constant and T the temper-
ature. The time may be measured in units of trial jumps
per adatom (MCA). Other commonly used time scales,
invoking, e.g., a microscopic attempt frequency ν, are lin-
early related to that unit. At low temperatures, the effi-
cient algorithm of Bortz, Kalos, and Lebowitz [17], BKL,
was implemented.

To study stability and dynamics of the island, several
quantities were computed. Among others, we recorded the
distribution of clusters (as usual, a s-cluster is formed by
s adatoms connected by occupied neighbouring sites), es-
pecially the fraction of adatoms in the largest cluster, i.e.
the “reduced island size”,

nmax = Nmax/M
2 (4)

where Nmax is the number of adatoms in the largest clus-
ter. Furthermore, the fluctuations of that island size, the
density of adatoms, the energy E, see (2), and the fluctua-
tions of the energy were monitored. To analyse the motion
of the island, we determined the time evolution of the po-
sition of its center of mass, see Section 4.
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Fig. 2. Time dependence of the island size nmax(t) for M = 50
and L = 250, at various temperatures kBT/Eb. The initial
configuration of the simulations is a square cluster with M2

adatoms. The time is measured in trial jumps per adatom
(MCA).

3 Thermal stability

In the ground state, T = 0, the M2 adatoms form a com-
pact square cluster, at sufficiently low coverage θ (other-
wise, a stripe of adatoms will minimize the energy). At
non–zero temperatures, adatoms may detach from the is-
land, leading to a dynamic equilibrium of the rounded
cluster and the “gas” of adatoms on the terrace, see Fig-
ure 1. Of course, the size of the island is expected to shrink
as the temperature increases, as demonstrated in Figures 2
and 3.

For reasons of simplicity, we assume equal energy bar-
riers in the bond–counting ansatz, (1), i.e. E0 = Eb. Start-
ing the simulations with a square cluster of M2 adatoms,
the time evolution of the island size, nmax(t), at various
temperatures kBT/Eb, is shown in Figure 2. Obviously,
equilibration may be rather slow, as observed before in the
related Ising model [14]. Discarding the initial relaxation,
the thermal equilibrium value for the reduced island size,
nm(T ) = 〈nmax〉, is obtained by averaging over the subse-
quent, possibly strongly fluctuating, see Figure 2, simula-
tional data. The resulting temperature dependent island
size is depicted in Figure 3, at coverage θ = 0.04 with
M = 25 and 50 (hence, L = 125 and 250).

The drastic decrease of nm(T ), both for periodic and
free boundary conditions, in a narrow range of tempera-
tures suggests a phase transition at the critical temper-
ature Tc in the thermodynamic limit, L,M −→ ∞, at
constant coverage θ = M2/L2. The reduced island size
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Fig. 3. Temperature dependence of the thermally averaged is-
land size nm(T ) for surfaces with 1252 sites and 252 adatoms
(open circles: periodic boundary conditions; full diamonds: re-
flecting boundaries) as well as 2502 sites and 502 adatoms
(open squares: periodic boundary conditions). Error bars are
smaller than symbol sizes.

nm(T ) may then be interpreted as the “order parameter”,
vanishing at T ≥ Tc. In the high–temperature phase, the
island disappears in the gas of adatoms. Indeed, finite–size
analyses of the Monte Carlo data, at fixed coverages, allow
to locate the phase transition: For example, at θ = 0.01,
the turning point, Tm(M), of the temperature dependent
island size nm(T ), see Figure 3, is found to shift for large
values ofM approximately like Tc−Tm(M) ∝ 1/M , and at
temperatures above Tc, nm(T ) goes to zero inversely pro-
portional to M2 (for details, see Ref. [18]). Moreover, the
transition is signalled by a pronounced maximum in the
temperature derivative of the energy close to Tm, similarly
to that of the fluctuations in the island size and the en-
ergy. All these quantities seem to show singular behaviour
in the thermodynamic limit.

In general, a phase diagram in the temperature–
coverage (kBT/Eb, θ) plane may be determined, with a
single large cluster or, at θ ≥ 1/4, a stripe of adatoms
characterising the low–temperature phase. Because of the
transcription to the Ising model, (3), Tc is known exactly
at θ = 1/2, namely kBT/Eb = 1/(2 ln(

√
2+1)). Certainly,

the transition temperature tends to decrease with decreas-
ing coverage. For instance, we estimated, at θ = 0.04, 0.01,
and 0.0016 the critical temperatures kBT/Eb ≈ 0.49, 0.38,
and 0.28, respectively.

Approaching the phase transition from below, the
largest cluster becomes more and more ramified and may

dissociate quite easily, while other groups of adatoms may
coalesce forming a new largest cluster, as one may read-
ily observe in the simulations. Accordingly, the island size
nm(T ) as well as the energy may fluctuate strongly, and
good statistics is needed to get reliable equilibrium values
in the critical region, and to quantify the asymptotics. In
particular, we analysed the “order parameter” nm(T ), as
T −→ Tc. Fitting the simulational data to a power–law

nm(T ) ∝ (Tc − T )β (5)

we obtained, from extensive simulations at coverages
0.0016 ≤ θ ≤ 0.04, β = 0.45± 0.01, being (if at all) only
fairly weakly dependent on the coverage. The rather large
error bar reflects, especially, uncertainties in extrapolat-
ing the estimates to the thermodynamic limit. Actually,
we computed an effective exponent βeff = d ln(nm)/d ln(t),
where t = |Tc−T | or |Tm−T |, leading to upper and lower
bounds for the critical exponent β, which is approached
in the limit L,M −→∞ and t −→ 0.

The standard description of a cluster in equilibrium
with a gas is based on the Gibbs–Thomson formula [19].
The equilibrium density ρ of the gas of adatoms in
coexistence with a circular island of radius R is then
[11,12]

ρ(R) = ρs exp[γ/(RρikBT )] (6)

where γ is the free energy per unit length of the island
edge, ρi is the density of the island, and ρs(T ) denotes the
density of a gas of adatoms in the presence of a straight
step. Modified formulae have been discussed [11–14] to in-
clude, e.g., interactions between the adatoms on the ter-
race. However, no attempt is known to us to extend the
description into the critical region, where the island tends
to disappear, ρ ≈ ρi.

In our simulations, we confirmed that the density of
adatoms ρ is, indeed, constant, when exceeding a criti-
cal distance from the center of the island. Moreover, at
low temperatures and coverages, the Gibbs–Thomson for-
mula (6) predicts an approximately logarithmic depen-
dence of the characteristic temperature Tx, with nm(Tx) =
x, on the coverage θ

kBTx ∝ −1/ ln[θ(1− x)] (7)

fixing the number of adatoms M2 and varying the surface
size L2. To derive (7), one may use the low–temperature
relation [12] ρs ∝ exp(−Ead/kBT ), where Ead is the en-
ergy to detach an atom from the step. Indeed, for example,
our simulational data at M = 10, 100 ≤ L ≤ 1000, and
x = 1/2 agree well with (7) [18].

4 Diffusion

The exchange of adatoms between the island and the sur-
rounding terrace gas leads to a diffusive motion of the
equilibrated island. The corresponding diffusion constant
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D follows from the fluctuations in the position of the cen-
ter of mass of the cluster, rcm(t),

D = 〈(rcm(t)− rcm(0))2〉/(4t) (8)

where the brackets denote the equilibrium average.
From previous studies [1–8], one expects that D de-

pends on the number of adatoms in the island, N =
〈Nmax〉, at least asymptotically for large values of N , as

D ∝ N−α (9)

with the value of α characterising the dominat mecha-
nism of exchange between the cluster and the gas, discrim-
inating, e.g., island-edge or periphery diffusion, terrace
diffusion and evaporation–condensation kinetics (a simi-
lar classification holds for step fluctuations [20,21]), see
below.

To check the diffusive character of the island mo-
tion, (8), and to determine the characteristic exponent α,
we performed kinetic Monte Carlo simulations, using the
bond–counting ansatz, (1), with E0 = 0, thereby speed-
ing up the dynamic processes. The time may be measured
in units of seconds. Invoking the microscopic attempt fre-
quency ν, one trial jump per adatom, 1 MCA, corresponds
then to 1/(4ν) seconds [13,16]. We chose ν = 1011 Hz. The
lattice constant of the square surface was set equal to one.
To compute the fluctuations in the position of the center
of mass of the island, (8), we first equilibrated the sys-
tem, before averaging over an ensemble of initial times as
well as an ensemble of (up to 1000) realizations. The sim-
ulations were done at low temperatures, well below Tc,
namely kBT/Eb = 0.2 and 0.28, for islands of sizes N
ranging from about 20 to about 700. The coverage was
fixed, θ = 0.01. We applied here the BKL algorithm in
our extensive simulations.

The positional fluctuations, 〈(rcm(t) − rcm(0))2〉, are
found to increase, indeed, linearly in time, even at early
times. The diffusion constant D is then readily obtained
from linear regression. The resulting size dependent D(N)
at kBT/Eb = 0.28 is shown in Figure 4. Discarding the
smallest island size, the characteristic exponent α is esti-
mated to be, on average, α = 1.02± 0.03. At kBT/Eb =
0.2, the value of α seems to be consistent with α = 1 as
well (α = 1.04± 0.04), for island sizes N ranging from 20
to 700.

From elementary geometry and energy considera-
tions [14] and from a Langevin theory [2], α = 1 may
be argued to correspond to an island motion driven by
terrace diffusion, where the adatom emitted by the island
diffuses as a random walker on the terrace before attaching
again (or a vacancy may diffuse through the island).

In principle, other mechanisms may compete, in par-
ticular, random detachments and attachments of adatoms
at the island edge (evaporation–condensation kinetics) or
diffusion of the atoms along the island edge (periphery dif-
fusion), leading to α = 1/2 and 3/2, respectively [2,14]. In
addition, periphery diffusion may be hindered by corners
and kinks, modifying, possibly, the value of α [4,6]. Among
others, details of the shape of the islands as well as the
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Fig. 4. Logarithm of the diffusion constant D vs. logarithm
of number of adatoms in the largest cluster N at coverage
θ = 0.01 and temperature kBT/Eb = 0.28. The dashed line
corresponds to α = 1. The size of the surfaces (L2) ranged
from 502 to 2802 in the simulations.

activation energies are expected to determine which mech-
anism dominates. In general, it is reasonable to consider
an effective characteristic exponent αeff = −d lnD/d lnN ,
which may depend on island size N and temperature T ,
as observed in experiments and simulations.

In our case, Figure 4 indicates an increase of αeff

from higher values at small island sizes towards α ≈ 1
at Ni ≈ 30 − 40. Of course, another crossover at cluster
sizes exceeding those we studied, N ≈ 700, cannot be
excluded. Actually, simulations on a related Ising model,
applying Kawasaki dynamics, were interpreted as pro-
viding evidence for a crossover from periphery diffusion
to evaporation–condensation kinetics, studying somewhat
smaller cluster sizes, N ≤ 500, and higher coverages, with
an average exponent α not far from one [14]. In contrast to
the previous study, we determined D(N) at fixed coverage.
Obviously, our data do not show clearly such a crossover,
but it cannot be ruled out.

It seems interesting to note that α ≈ 1 has been found
in experiments on Ag(111), using scanning tunneling mi-
croscopy [1], but other values of α have been reported for
different surfaces, reflecting the above mentioned compet-
ing mechanisms.

5 Summary

Thermal stability and diffusion of an adatom island
of monoatomic height on a square surface have been
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studied, using a standard bond–counting ansatz for the
energy barriers and performing kinetic Monte Carlo sim-
ulations.

A phase transition has been identified, with the frac-
tion of adatoms in the largest cluster nm being the “order
parameter”. nm(T ) vanishes on approach to the transition
temperature Tc as nm ∝ |Tc−T |β with β = 0.45± 0.10 at
various small coverages θ. In addition, the energy as well
as fluctuations in the island size and in the energy exhibit
singular behaviour at Tc. Experimentally, such phenom-
ena may be observed on a terrace bordered by descending
steps with large Schwoebel–Ehrlich barriers to allow for
equilibration of the island with the surrounding gas of
adatoms on the terrace.

The diffusion constantD, describing the island motion,
decreases with the number of adatoms in the island N like
D ∝ N−α, with α being close to one for an extended range
of island sizes at temperatures well below Tc at θ = 0.01.
α = 1 corresponds to the case where the dominant mech-
anism driving the motion of the island is terrace diffusion.
An alternative interpretation invokes a crossover from pe-
riphery diffusion to evaporation–condensation kinetics.

Of course, it would be interesting to investigate the
robustness of our findings against varying, especially,
the activation energies in a systematic way.

It is a pleasure to thank M. Bisani, T.L. Einstein, G. Schulze
Icking–Konert, and L. Verheij for useful discussions and help.

Note added in proof

Attention is drawn to related recent work on island diffu-
sion [22,23].
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